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Abstract

Oscillatory signals drive reaching and locomotion for
both robots and primates. Recent results in neuroscience
have shown that periodic signals are present in the motor
cortex of primates during rhythmic tasks such as locomo-
tion as well as during linear movements notably reaching.
Our works on learning latent motion representations in
robotics revealed that oscillatory latent dynamics emerge
automatically from training data for quadruped locomo-
tion as well as manipulation tasks. Inspired by these
works, we recreate the locomotion latent-spaces as well
as create manipulation specific versions. With the latter
we show that manipulation problems can be solved us-
ing periodic signals in a suitable latent-space. We see
that these trajectories are reminiscent of those seen in
the motor cortex. We artificially lesion the decoder of the
locomotion model to understand how the correlations are
captured. This results in deformation of both the oscilla-
tory signals in the latent space and degradation in the
locomotion trajectories.

Keywords: Representation learning; machine learning;
robotics; neuroscience; sensorimotor control

Introduction

Understanding the intricacies of locomotion and manipulation
is a key driver for both neuroscientists and roboticists. Indeed,
recent work in neuroscience has revealed that locomotion in
primates is controlled by oscillations in the monkey’s motor
cortex (Churchland et al., 2012). These oscillations are ob-
served in low-dimensional projections of neural populations
in the motor cortex, whilst the monkey is performing rhythmic
movement such as swimming and walking. As a matter of fact,
these oscillations are also found in the motor cortex when the
primate is moving its limbs linearly during reaching.

In conjunction with the previous results, the utilisation of
generative models in the field of robotics (Mitchell et al., 2022,
2022) has revealed that robot locomotion can be represented
as oscillatory signals in low-dimensional representations. In
our previous work (Mitchell et al., 2022, 2022) we create a
structured latent-space for locomotion utilising a deep gener-
ative model in order to control a real quadruped robot. In par-
ticular, a variational auto-encoder (VAE) (Kingma & Welling,
2014; Rezende, Mohamed, & Wierstra, 2014) is utilised to
create a low-dimensional representation of locomotion data
(e.g. joint positions, torques, etc.) via an information bottle-
neck, which is the latent-space. It is found that the properties
of locomotion such as cadence and footstep height are dis-
entangled in the space and that cyclic signals injected within
produce continuous locomotion.

The work in Churchland et al., 2012 broke new ground with
their discovery that reaching is also periodic in the motor cor-
tex. Similarly, the oscillations, which emerge in the latent
space, are a consequence of their learnt structure. We thus
posit that the cyclic signals in the motor cortex are also a re-
sult of order in the neural populations of the primate’s motor
cortex.
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Figure 1: Oscillatory signals are found in neural populations

of primate’s motor cortex in both locomotion (panel (a)) and
reaching (panel (b)). These two panels are reproduced with
permission from Churchland et al., 2012. Quadruped locomo-
tion can be solved via planning in a structured latent-space
(panel (c)). The trajectories utilised are also cyclic. A suit-
ably trained latent space for robot manipulation also facilitates
solving reaching tasks (panel (d)).

To investigate this, we present the following paper, which
is a summary of our previous work Parker Jones et al., 2022.
Here, we explore the structure of the learnt latent-space for
locomotion and show that key gait-specific properties emerge
automatically. As a result, we are able to generate new move-
ments unseen during training. In order to investigate if robotic
manipulation is also cyclic in a learnt latent-space, we cre-
ate another similar space and show that a low-dimensional
representation with interpretable properties emerges. With
this understanding, we inject oscillatory signals similar to
those used during locomotion to solve the reaching tasks.
When the latent-space signals for locomotion and manipula-
tion are plotted and compared to those found in the motor cor-
tex (Churchland et al., 2012) as seen in Figure 1, there is a
visual similarity. Finally, we take the analogy between the la-
tent space and the motor cortex further and artificially lesion
the VAE’s decoder and visualise the results. We find that the
locomotion trajectories degrade in a predictable and repeat-
able way and that encoding the resulting locomotion reveals
deformation of the cyclic signals in the latent space.



Methods

We posit that the oscillations which exist in latent space and
in the motor cortex are a result of their structures. Since we
are unable to artificially construct a motor cortex in the lab,
we created a learnt latent-space. Therefore, we describe how
the latent-space is created; how we inspect and discover the
structure; and finally, how the models are lesioned in order to
inspect how correlations are captured by the models.

A VAE is trained for the quadruped and for the manipula-
tor. The inputs to the VAES’ encoders consist of a history
of robot states (e.g. joint positions, torques, contact forces)
and the decoder output are the predicted next states for a
preview horizon. The VAEs are trained using short trajecto-
ries of both the manipulator and the quadruped operating in
their environments. For the manipulator, the ELBO loss is min-
imised. The quadruped continually makes and breaks contact
as it takes steps resulting in discontinuously changing dynam-
ics between swing versus stance. Therefore, the latent space
is constrained by learnt multi-layer perceptrons (MLP) called
performance predictors (PP) that predict which feet are in con-
tact. This adds an additional binary cross-entropy loss term to
the locomotion training loss during optimisation.

The latent-space structure is investigated in two ways:
Firstly, trajectories from the test dataset are encoded and the
resulting trajectories inspected. Secondly, a short oscillatory
trajectory is injected into latent space and decoded. The de-
coded trajectory is sent to a tracking controller and the robots’
movements are visualised.

Finally, we artificially impair the locomotion VAE in order to
investigate how the latent-space trajectories map to the result-
ing robot trajectories. This is achieved by applying a cascad-
ing dropout to the decoder layers. This filter either passes the
output of neurons in the decoder through or zeros them. The
probability of zeroing the neuron output increases with time
and once the filter zeros a neuron, it continues to do so — akin
to neural degradation.

Results

The learnt latent-spaces are straight-forward to inspect com-
pared to the motor cortex. Therefore, we probe our latent-
space structures to investigate the structure and compare the
resulting trajectories to those observed in motor cortex. Addi-
tionally, we modulate the signals injected into the latent-space
to discover how these affect the robot’s movement. Finally, we
impair the locomotion model and visualise how this causes the
locomotion trajectories to degrade.

As seen in Figure 1, the locomotion trajectories in latent-
space form a periodic cycle. We inject these trajectories into
the latent space and find that the time period of the red signal
in Figure 1 controls the cadence of the robot and the amplitude
governs the footstep height. The blue signal is inferred from
the robot states and controls the footstep length of the robot,
and is /2 out of phase with the red signal. The two signals
plotted against each other form the limit cycle in Figure 1.

We repeat this experiment for manipulation and find that
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Figure 2: The VAE’s decoder is lesioned and the trajectories
decoded. These output trajectories are re-encoded and visu-
alised. The latent-space trajectory has deformed after lesion-
ing. The symmetrical structure has degraded.

two sine wave oscillations where the latter is also 7/2 out of
phase with the first can solve reaching tasks. This resem-
bles what Churchland et al., 2012 have found in Figure 1 (b),
where we see a cyclic pattern constructed from two slightly
out of phase periodic signals for both reaching and locomo-
tion. We emphasise that this is a curious resemblance and it
is not possible for us to show that the similarity is more funda-
mental.

Lastly, we extend the analogy between the motor cortex
and the latent space by artificially impairing the locomotion de-
coder. This is something that should not be done to the motor
cortex on both practical and ethical grounds, but is possible
for our in-silico models. We utilise the same oscillatory drive
signals as in Figure 1 (c) and decode the results. We find that
two pairs of legs are dragged along the ground and no longer
take swing steps. The same sets of legs fail together since the
locomotion is conditioned on the trot gait where the left front
and right hind move together. We also encode the resulting
motion and notice how the oscillations in latent space change
shape and are no longer symmetrical, see Figure 2.

Conclusion

There are visual similarities between the oscillations found in
the primate’s motor cortex and the robot’s latent spaces. Un-
like the motor cortex, we are able to interrogate the structure
of the latent space. In doing so, we find that emergent prop-
erties of locomotion and the reaching workspace become em-
bedded in the space. In the case of locomotion, cadence and
footstep height are disentangled into separate orthogonal di-
mensions of the latent space. This facilitates the blending be-
tween dynamic trot gaits. Alternatively, for manipulation the
workspace of the robot is embedded in the latent space. In
essence the table top surface is mapped into the space. Fi-
nally, we are able to lesion our VAE models to observe how
the latent-space trajectories degrade.
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